top of page

Meloxicam

Pharmacology

Clinical Particulars

Regulatory Class

Meloxicam, an NSAID that preferentially inhibits the COX-2 enzyme, is a piroxicam analogue in which the pyridyl group in the amidic part of the molecule was substituted with the 5-methylthiazole system.


Pharmacodynamics

Pharmacokinetics

Mechanism of Action

  •     COX Inhibition: Meloxicam preferentially inhibits the COX-2 enzyme.

Clinical Applications

 Meloxicam is used in veterinary presentations to alleviate inflammation and pain in acute and chronic musculoskeletal disorders and to reduce post-operative pain and inflammation.

  • Anti-inflammatory Alleviation of inflammation in both acute and chronic musculoskeletal disorders and the reduction of postoperative inflammation

  • Analgesia: Mild pain-relieving effects.

  • Perioperative Use: A component of multimodal analgesia suitable for relieving pain associated with surgery in ASA1, ASA2 and potentially some ASA3 patients of many species.  Meloxicam provides effective analgesia, especially in combination with opiates.

Pharmacodynamics

Metabolism

  • Hepatic: Primarily metabolised by oxidation in the liver in most species. A significant amount of enterohepatic re-circulation occurs.

  • Species Differences: Rabbits metabolise meloxicam faster than dogs, humans and rats.

Elimination

  • Faecal | Inactive Metabolites: In dogs and cats, metabolites are generally excreted in faeces.

Pharmacokinetics

Precautions

Precautions

Availability

Availability

Identifiers

  • Systematic Name: [IUPAC Name: 4-hydroxy-2-methyl-N-(5-methyl-1,3-thiazol-2-yl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide]

  • Formula: C14-H13-N3-O4-S2

  • Pharmacotherapeutic group:  Antiinflammatory and antirheumatic products, non-steroids (oxicams)

  • ATCvet Code: QM01AC06; QM01AC56 (WHO),

  • ATC code: M01AC06; M01AC56 (WHO),

Identifiers

Evidence Base

  1. Beretta, C., Garavaglia, G., Cavalli, M., 2005.  COX-1 and COX-2 inhibition in horse blood by phenylbutazone, flunixin,  carprofen and meloxicam: an in vitro analysis. Pharmacol. Res. 52,  302–306. https://doi.org/10.1016/j.phrs.2005.04.004

  2. Blois, S.L., Allen, D.G., Wood, R.D., Conlon,  P.D., 2010. Effects of aspirin, carprofen, deracoxib, and meloxicam on  platelet function and systemic prostaglandin concentrations in healthy  dogs. Am. J. Vet. Res. 71, 349–358. https://doi.org/10.2460/ajvr.71.3.349

  3. Busch, U., Schmid, J., Heinzel, G., Schmaus, H.,  Baierl, J., Huber, C., Roth, W., 1998. Pharmacokinetics of meloxicam in  animals and the relevance to humans. Drug Metab. Dispos. 26, 576–584.

  4. Emery, P., 1999. Clinical aspects of COX-2 inhibitors. Drugs Today 35, 267. https://doi.org/10.1358/dot.1999.35.4-5.552202

  5. Engelhardt, G., 1996. Pharmacology of meloxicam,  a new non-steroidal anti-inflammatory drug with an improved safety  profile through preferential inhibition of COX-2. Br. J. Rheumatol. 35  Suppl 1, 4–12. https://doi.org/10.1093/rheumatology/35.suppl_1.4

  6. Eskafian, H., Shojaee Tabrizi, A., Ansari Lari,  M., 2017. Gastroscopic Study of Meloxicam, Tramadol, and Their Combined  Administration on the Development of Gastric Injuries in Dogs. Top  Companion Anim Med 32, 109–113. https://doi.org/10.1053/j.tcam.2017.09.001

  7. Euller-Ziegler, L., Vélicitat, P., Bluhmki, E.,  Türck, D., Scheuerer, S., Combe, B., 2001. Meloxicam: a review of its  pharmacokinetics, efficacy and tolerability following intramuscular  administration. Inflamm. Res. 50 Suppl 1, S5-9. https://doi.org/10.1007/PL00022377

  8. Hawkins, M.G., Karriker, M.J., Wiebe, V.,  Taylor, I.T., Kass, P.H., 2006. Drug distribution and stability in  extemporaneous preparations of meloxicam and carprofen after dilution  and suspension at two storage temperatures. Journal of the American  Veterinary Medical Association 229, 968–974. https://doi.org/10.2460/javma.229.6.968

  9. Karateev, A.E., 2014. [Meloxicam: the golden mean of nonsteroidal anti-inflammatory drugs]. Ter. Arkh. 86, 99–105.

  10. Morović-Vergles, J., 2008. [Meloxicam--the balance of efficacy and safety]. Reumatizam 55, 85–86.

  11. Mullins, K.B., Thomason, J.M., Lunsford, K.V.,  Pinchuk, L.M., Langston, V.C., Wills, R.W., McLaughlin, R.M., Mackin,  A.J., 2012. Effects of carprofen, meloxicam and deracoxib on platelet  function in dogs. Vet Anaesth Analg 39, 206–217. https://doi.org/10.1111/j.1467-2995.2011.00684.x

  12. Naruse, T., Nishida, Y., Ishiguro, N., 2007.  Synergistic effects of meloxicam and conventional cytotoxic drugs in  human MG-63 osteosarcoma cells. Biomed. Pharmacother. 61, 338–346. https://doi.org/10.1016/j.biopha.2007.02.011

  13. Noble, S., Balfour, J.A., 1996. Meloxicam. Drugs 51, 424–430; discussion 431-432. https://doi.org/10.2165/00003495-199651030-00007

  14. Ogino, K., Hatanaka, K., Kawamura, M., Katori,  M., Harada, Y., 1997. Evaluation of Pharmacological Profile of Meloxicam  as an Anti-Inflammatory Agent, with Particular Reference to Its  Relative Selectivity for Cyclooxygenase-2 Over Cyclooxygenase-1. PHA 55,  44–53. https://doi.org/10.1159/000139511

  15. Türck, D., Roth, W., Busch, U., 1996. A review  of the clinical pharmacokinetics of meloxicam. Br. J. Rheumatol. 35  Suppl 1, 13–16. https://doi.org/10.1093/rheumatology/35.suppl_1.13

Evidence

Monograph Details

Mono Details
bottom of page